Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4582-4591, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330910

RESUMO

The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets. Here, we investigate the permeabilities of over 200 macrocyclic 10-mers using the thioether cyclization motif commonly found in mRNA display macrocycle libraries. We identified the optimal lipophilicity range for achieving permeability in thioether-cyclized 10-mer cyclic peptide-peptoid hybrid scaffolds and showed that permeability could be maintained upon extensive permutation in the backbone. In one case, changing a single amino acid from d-Pro to d-NMe-Ala, representing the loss of a single methylene group in the side chain, resulted in a highly permeable scaffold in which the low-dielectric conformation shifted from the canonical cross-beta geometry of the parent compounds into a novel saddle-shaped fold in which all four backbone NH groups were sequestered from the solvent. This work provides an example by which pre-existing physicochemical knowledge of a scaffold can benefit the design of macrocyclic peptide mRNA display libraries, pointing toward an approach for biasing libraries toward permeability by design. Moreover, the compounds described herein are a further demonstration that geometrically diverse, highly permeable scaffolds exist well beyond conventional drug-like chemical space.


Assuntos
Peptídeos Cíclicos , Peptídeos , Peptídeos/química , Peptídeos Cíclicos/química , Biblioteca de Peptídeos , Permeabilidade , RNA Mensageiro , Sulfetos
2.
Sci Rep ; 12(1): 14250, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995925

RESUMO

Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.


Assuntos
Ácidos Nucleicos , Colorimetria , DNA/química , Corantes Fluorescentes/química , Ácidos Nucleicos/química , Espectrometria de Fluorescência
3.
J Med Chem ; 65(6): 5072-5084, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35275623

RESUMO

Despite the notoriously poor membrane permeability of peptides, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of "undruggable" intracellular targets. A major impediment to the design of cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. While several strategies have been proposed to mitigate this deleterious effect, only few studies have used polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinylglutamine (Pye), whose side chain contains a powerful hydrogen-bond-accepting C═O amide group but no hydrogen-bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Therefore, this approach offers a complementary tool for improving membrane permeability and solubility in cyclic peptides.


Assuntos
Aminoácidos , Peptídeos Cíclicos , Amidas , Ligação de Hidrogênio , Peptídeos Cíclicos/química , Permeabilidade , Solubilidade
4.
Angew Chem Int Ed Engl ; 60(12): 6653-6659, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319463

RESUMO

Small molecule probe development is pivotal in biomolecular science. Research described here was undertaken to develop a non-peptidic chemotype, piptides, that is amenable to convenient, iterative solid-phase syntheses, and useful in biomolecular probe discovery. Piptides can be made from readily accessible pip acid building blocks and have good proteolytic and pH stabilities. An illustrative application of piptides against a protein-protein interaction (PPI) target was explored. The Exploring Key Orientations (EKO) strategy was used to evaluate piptide candidates for this. A library of only 14 piptides contained five members that disrupted epidermal growth factor (EGF) and its receptor, EGFR, at low micromolar concentrations. These piptides also caused apoptotic cell death, and antagonized EGF-induced phosphorylation of intracellular tyrosine residues in EGFR.


Assuntos
Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Peptídeos/química , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fosforilação , Ligação Proteica
5.
Org Biomol Chem ; 17(45): 9712-9725, 2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31531484

RESUMO

Fluorescent hybridization probes are important tools for rapid, specific and sensitive analysis of genetic mutations. In this work, we synthesized novel alkyne-modified styryl dyes for conjugation with pyrrolidinyl peptide nucleic acid (acpcPNA) by click chemistry for the development of hybridization responsive fluorescent PNA probes. The free styryl dyes generally exhibited weak fluorescence in aqueous media, and the fluorescence was significantly enhanced (up to 125-fold) upon binding with DNA duplexes. Selected styryl dyes that showed good responses with DNA were conjugated with PNA via sequential reductive alkylation-click chemistry. Although these probes showed little fluorescence change when hybridized to complementary DNA, significant fluorescence enhancements were observed in the presence of structural defects including mismatched, abasic and base-inserted DNA targets. The largest increase in fluorescence quantum yield (up to 14.5-fold) was achieved with DNA carrying base insertion. Although a number of probes were designed to give fluorescence response to complementary DNA targets, probes that are responsive to mutations such as single nucleotide polymorphism (SNP), base insertion/deletion and abasic site are less common. Therefore, styryl-dye-labeled acpcPNA is a unique probe that is responsive to structural defects in the duplexes that may be further applied for diagnostic purposes.


Assuntos
Sondas de DNA/química , DNA/análise , Fluorescência , Corantes Fluorescentes/química , Ácidos Nucleicos Peptídicos/química , Pirrolidinas/química , Estirenos/química , Química Click , DNA/genética , Corantes Fluorescentes/síntese química , Estrutura Molecular , Mutação , Estirenos/síntese química
6.
Org Biomol Chem ; 17(12): 3267-3274, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30847453

RESUMO

An active segment of the research community designing small molecules ("minimalist mimics" of peptide fragments) to interfere with protein-protein interactions have based their studies on an implicit hypothesis. Here we refer to this as the Secondary Structure Hypothesis, that might be defined as, "If a small molecule can orient amino acid side-chains in directions that resemble side-chains of the parent secondary structure at the interface, then that small molecule is a candidate to perturb the protein-protein interaction". Rigorous tests of this hypothesis require co-crystallization of minimalist mimics with protein receptors, and comparison of the bound conformations with the interface secondary structures they were designed to resemble. Unfortunately, to the best of our knowledge, there is no such analysis in the literature, and it is unlikely that enough examples will emerge in the near future to test the hypothesis. Research described here was designed to challenge this hypothesis from a different perspective. In a previous study, preferred conformations of a series of novel minimalist mimics were simulated then systematically overlaid on >240 000 crystallographically characterized protein-protein interfaces. Select data from that overlay procedure revealed chemotypes that overlay side chains on various PPI interfaces with a relatively high frequency of occurrence. The first aim of this work was to determine if good secondary structure mimics overlay frequently on PPI interfaces. The second aim of this work was to determine if overlays of preferred conformers at interface regions involve secondary structures. Thus situations where these conformations overlaid extremely well on PPI interfaces were analyzed to determine if secondary structures featured the PPI regions where these molecules overlaid in the previous study. Combining conclusions from these two studies enabled us to formulate a hypothesis that is complementary to the Secondary Structure Hypothesis, but, unlike this, is supported by abundant data. We call this the Interface Mimicry Hypothesis.


Assuntos
Modelos Químicos , Mimetismo Molecular , Proteínas/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
7.
Org Biomol Chem ; 17(4): 908-915, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30629068

RESUMO

Small molecules that can interrupt or inhibit protein-protein interactions (PPIs) are valuable as probes in chemical biology and medicinal chemistry, but they are also notoriously difficult to develop. Design of non-peptidic small molecules that mimic amino acid side-chain interactions in PPIs ("minimalist mimics") is seen as a way to fast track discovery of PPI inhibitors. However, there has been little comment on general design criteria for minimalist mimics, even though such guidelines could steer construction of libraries to screen against multiple PPI targets. We hypothesized insight into general design criteria for minimalist mimics could be gained by comparing preferred conformations of typical minimalist mimic designs against side-chain orientations on a huge number of PPI interfaces. That thought led to this work which features nine minimalist mimic designs: one from the literature, and eight new "hypothetical" ones conceived by us. Simulated preferred conformers of these were systematically aligned with >240 000 PPI interfaces from the Protein Data Bank. Conclusions from those analyses did indeed reveal various design considerations that are discussed here. Surprisingly, this study also showed one of the minimalist mimic designs aligned on PPI interface segments more than 15 times more frequently than any other in the series (according to uniform standards described herein); reasons for this are also discussed.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Bases de Dados de Proteínas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Estereoisomerismo
8.
J Am Chem Soc ; 140(9): 3242-3249, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29378408

RESUMO

The protein-protein interaction between proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) is a relatively new, and extremely important, validated therapeutic target for treatment and prevention of heart disease. Experts in the area agree that the first small molecules to disrupt PCSK9·LDLR would represent a milestone in this field, yet few credible leads have been reported. This paper describes how side-chain orientations in preferred conformations of carefully designed chemotypes were compared with LDLR side chains at the PCSK9·LDLR interface to find molecules that would mimic interface regions of LDLR. This approach is an example of the procedure called EKO (Exploring Key Orientations). The guiding hypothesis on which EKO is based is that good matches indicate the chemotypes bearing the same side chains as the protein at the sites of overlay have the potential to disrupt the parent protein-protein interaction. In the event, the EKO procedure and one round of combinatorial fragment-based virtual docking led to the discovery of seven compounds that bound PCSK9 (SPR and ELISA) and had a favorable outcome in a cellular assay (hepatocyte uptake of fluorescently labeled low-density lipoprotein particles) and increased the expression LDLR on hepatocytes in culture. Three promising hit compounds in this series had dissociation constants for PCSK9 binding in the 20-40 µM range, and one of these was modified with a photoaffinity label and shown to form a covalent conjugate with PCSK9 on photolysis.

9.
Org Lett ; 17(3): 632-5, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25625791

RESUMO

Representative minimalist mimics 1 were prepared from amino acids. Scaffold 1 was not designed to mimic any particular secondary structure, but simulated accessible conformations of this material were compared with common ideal secondary structures and with >125,000 different protein-protein interaction (PPI) interfaces. This data mining exercise indicates that scaffolds 1 can mimic features of sheet-turn-sheets, somewhat fewer helical motifs, and numerous PPI interface regions that do not resemble any particular secondary structure.


Assuntos
Oxazóis/química , Piperidonas/química , Proteínas/química , Aminoácidos/química , Cristalografia por Raios X , Mimetismo Molecular , Estrutura Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...